Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process

Irina Yarulina, Kristof De Wispelaere, Simon Bailleul, Joris Goetze, Mike Radersma, Edy Abou-Hamad, Ina Vollmer, Maarten Goesten, Brahim Mezari, Emiel J. M. Hensen, Juan S. Martínez-Espín, Magnus Morten, Sharon Mitchell, Javier Perez-Ramirez, Unni Olsbye, Bert M. Weckhuysen, Veronique Van Speybroeck, Freek Kapteijn, Jorge Gascon

Research output: Contribution to journalArticlepeer-review

238 Scopus citations

Abstract

The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure–performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite ‘ZSM-5’ for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.
Original languageEnglish (US)
Pages (from-to)804-812
Number of pages9
JournalNature Chemistry
Volume10
Issue number8
DOIs
StatePublished - Jun 25 2018

Fingerprint

Dive into the research topics of 'Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process'. Together they form a unique fingerprint.

Cite this