Abstract
Carbon nitride thin films were deposited on silicon wafers by pulsed KrF excimer laser (wavelength 248 nm, duration 23 ns) ablation of graphite in a nitrogen atmosphere. Different excimer laser fluences and pressures of the nitrogen atmosphere were used in order to achieve a nitrogen content as high as possible in the deposited thin films. Fourier transform infrared and x-ray photoelectron spectroscopies were used to identify the binding structure and the content of the nitrogen species in the deposited thin films. The N/C ratio 0.42 was obtained at an excimer laser fluence of 0.8 J cm-2 at a repetition rate of 10 Hz under a nitrogen pressure of PN= 100 mTorr. A high content of C=N double bond instead of C≡N triple band was indicated in the deposited thin films. Ellipsometry was used to analyze the optical properties of the deposited thin films. The carbon nitride thin films have amorphous-semiconductorlike characteristics with an optical band gap Eopt of 0.42 eV.
Original language | English (US) |
---|---|
Pages (from-to) | 2909-2912 |
Number of pages | 4 |
Journal | Journal of Applied Physics |
Volume | 84 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1 1998 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy