Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation

C. Peng, A. H.L. Chow, C. K. Chan

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Purpose. To use a single particle levitation technique to investigate the equilibrium water sorption characteristics in both the evaporation and growth of four respiratory drugs at 37°C: atropine sulfate (AS), isoproterenol hydrochloride (IPHC) and isoproterenol hemisulfate (IPHS) and disodium cromoglycate (DSCG). Methods. The equilibrium water content was measured as a function of relative humidity (RH) by a single particle levitation technique using an electrodynamic balance (EDB). The change of water content was determined by the voltage required to balance the weight of the levitated particle electrostatically. The water activities of bulk samples were also measured. Growth ratios were determined and compared with values in the literature. Results. Crystallization or deliquescence was not observed for AS, IPHC and LPHS. The hysteresis in the water cycle was not observed for any of the drugs. At RH - 0%, AS particles still contain about 5% water but IPHC and IPHS particles do not contain any residual water. The aerodynamic growth ratio from RH 0% to 99.5% is 2.60, 2.86, 2.42 and 1.26 for AS, IPHC, IPHS and DSCG, respectively. Supersaturated droplets of IPHC and IPHS are expected to exist in the ambient conditions. DSCG is in a solid state in the RH range of 10-90%. Conclusions. It is expected that some aerosolized drugs of low solubility may experience supersaturation before they enter the human body and this could exert a significant influence both on particle loss before inhalation and on the deposition of the drugs in the lungs. The EDB is a convenient and reliable tool for studying the hygroscopic properties of pharmaceutical aerosols, especially for supersaturated solutions.
Original languageEnglish (US)
Pages (from-to)1104-1109
Number of pages6
JournalPharmaceutical Research
Volume17
Issue number9
DOIs
StatePublished - Jan 1 2000
Externally publishedYes

ASJC Scopus subject areas

  • Organic Chemistry
  • Pharmaceutical Science
  • Molecular Medicine
  • Biotechnology
  • Pharmacology
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation'. Together they form a unique fingerprint.

Cite this