Suitable Fundamental Properties of Ta0.75V0.25ON Material for Visible-Light-Driven Photocatalysis: A DFT Study

Moussab Harb, Luigi Cavallo

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

By applying calculations based on density functional theory, and on density functional perturbation theory, together with generalized gradient approximation-Perdew–Burke–Emzerho and screened Coulomb hybrid HSE06 functionals, we predict novel and suitable fundamental parameters of the stable monoclinic Ta0.75V0.25ON semiconductor for solar water splitting. In addition to its predicted bandgap of 2.0 eV in the required zone for solar-driven water splitting, this material reveals a high visible-light absorption coefficient, high static dielectric constant, high hole and electron mobilities along the [001] and [010] crystallographic directions, relatively low exciton binding energy, and suitable band edge energy levels for oxidizing water and reducing protons. The optical, charge-carrier transport, and redox features predicted for this material are found to be considerably better than those obtained for Ta3N5, which is the most common semiconductor photocatalyst used in visible-light-driven water splitting.
Original languageEnglish (US)
Pages (from-to)1041-1048
Number of pages8
JournalACS Omega
Volume1
Issue number5
DOIs
StatePublished - Nov 29 2016

Fingerprint

Dive into the research topics of 'Suitable Fundamental Properties of Ta0.75V0.25ON Material for Visible-Light-Driven Photocatalysis: A DFT Study'. Together they form a unique fingerprint.

Cite this