TY - JOUR
T1 - Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts
AU - Krier, James M.
AU - Michalak, William D.
AU - Cai, Xiaojun
AU - Carl, Lindsay
AU - Komvopoulos, Kyriakos
AU - Somorjai, Gabor A.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. One of the authors (K.K.) also acknowledges funding provided by the UCB-KAUST Academic Excellence Alliance (AEA) Program for this research.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2014/12/8
Y1 - 2014/12/8
N2 - © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.
AB - © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.
UR - http://hdl.handle.net/10754/599798
UR - https://pubs.acs.org/doi/10.1021/nl502566b
UR - http://www.scopus.com/inward/record.url?scp=84921063312&partnerID=8YFLogxK
U2 - 10.1021/nl502566b
DO - 10.1021/nl502566b
M3 - Article
C2 - 25272243
SN - 1530-6984
VL - 15
SP - 39
EP - 44
JO - Nano Letters
JF - Nano Letters
IS - 1
ER -