TY - JOUR
T1 - Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms
AU - Tiraferri, Alberto
AU - Kang, Yan
AU - Giannelis, Emmanuel P.
AU - Elimelech, Menachem
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: This publication is based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We also acknowledge the NWRI-AMTA Fellowship for Membrane Technology awarded to Alberto Tiraferri.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/10/4
Y1 - 2012/10/4
N2 - This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.
AB - This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.
UR - http://hdl.handle.net/10754/599801
UR - https://pubs.acs.org/doi/10.1021/es3028617
UR - http://www.scopus.com/inward/record.url?scp=84870052629&partnerID=8YFLogxK
U2 - 10.1021/es3028617
DO - 10.1021/es3028617
M3 - Article
C2 - 23002900
SN - 0013-936X
VL - 46
SP - 11135
EP - 11144
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 20
ER -