TY - JOUR
T1 - Superhydrophobic transparent films from silica powder: Comparison of fabrication methods
AU - Liu, Li-Der
AU - Lin, Chao-Sung
AU - Tikekar, Mukul
AU - Chen, Ping-Hei
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-014-12
Acknowledgements: This study was funded by the King Abdullah University of Science and Technology Global Research Partnership Award, B-04 sub plan, Advancing the Development of Solar Building Technology for the Future: KUK-C1-014-12. Further thanks to Geosciences Department, National Taiwan University for extensive uses on the FEI Quanta 200 FEG SEM; Chemical Engineering Department, National Taiwan University for extensive uses on FTA125 contact angle goniometer; and Nanomaterial and Devices Lab, and Material Science and Engineering Department, National Taiwan University for extensive uses on Ocean Optics USB2000 Fibre Optic Spectrometer.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/7
Y1 - 2011/7
N2 - The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.
AB - The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.
UR - http://hdl.handle.net/10754/599802
UR - https://linkinghub.elsevier.com/retrieve/pii/S0040609011007875
UR - http://www.scopus.com/inward/record.url?scp=79958196769&partnerID=8YFLogxK
U2 - 10.1016/j.tsf.2011.03.129
DO - 10.1016/j.tsf.2011.03.129
M3 - Article
SN - 0040-6090
VL - 519
SP - 6224
EP - 6229
JO - Thin Solid Films
JF - Thin Solid Films
IS - 19
ER -