Superpixel-based Convolutional Neural Network for Georeferencing the Drone Images

Shihang Feng, Luca Passone, Gerard T. Schuster

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Information extracted from aerial photographs has been used for many practical applications such as urban planning, forest management, disaster relief, and climate modeling. In many cases labeling of information in the photo is still performed by human experts, making the process slow, costly, and error-prone. This paper shows how a convolutional neural network can be used to determine the location of GCPs in aerial photos, which significantly reduces the amount of human labor in identifying GCP locations. Two CNN methods, sliding-window CNN with superpixel-level majority voting and superpixel-based CNN, are evaluated and analyzed. The results of the classification and segmentation show that both of these methods can quickly extract the locations of objects from aerial photographs, but only superpixel-based CNN can unambiguously locate the GCPs.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
DOIs
StatePublished - 2021

Fingerprint

Dive into the research topics of 'Superpixel-based Convolutional Neural Network for Georeferencing the Drone Images'. Together they form a unique fingerprint.

Cite this