TY - JOUR
T1 - Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity
AU - Cha, Hyojung
AU - Fish, George
AU - Luke, Joel
AU - Alraddadi, Ahmad
AU - Lee, Hyun Hwi
AU - Zhang, Weimin
AU - Dong, Yifan
AU - Limbu, Saurav
AU - Wadsworth, Andrew
AU - Maria, Iuliana P.
AU - Francàs, Laia
AU - Sou, Hou Lon
AU - Du, Tian
AU - Kim, Ji-Seon
AU - McLachlan, Martyn A.
AU - McCulloch, Iain
AU - Durrant, James R.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2015-CRG4-2572
Acknowledgements: The authors gratefully acknowledge funding received from KAUST under the grant agreement no. OSR-2015-CRG4-2572 and the EPSRC/GCRF project SUNRISE (EP/P032591/1) and the Global Research Laboratory Program of the National Research Foundation, funded by the Ministry of Science, ICT & Future Planning (NRF-2017K1A1A2013153). H.C. acknowledges Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1A6A3A03011245). J.L. acknowledges the UK EPSRC for the Plastic Electronics Centre for Doctoral Training (EP/L016702/1) funding and CSEM Brasil for studentship.
PY - 2019/6/12
Y1 - 2019/6/12
N2 - Here, it is investigated whether an energetic cascade between mixed and pure regions assists in suppressing recombination losses in non-fullerene acceptor (NFA)-based organic solar cells. The impact of polymer-NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer-NFA phases to consisting of both intermixed and pure phase. Cyclic voltammetry is employed to investigate the impact of blend morphology upon NFA lowest unoccupied molecular orbital (LUMO) level energetics. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. Raman spectroscopy is used to investigate the origin of energetic shift of NFA LUMO levels. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. The studies focus on addressing whether aggregation-dependent acceptor LUMO level energetics are a general design requirement for both fullerene and NFAs, and quantifying the magnitude, origin, and impact of such energetic shifts upon device performance.
AB - Here, it is investigated whether an energetic cascade between mixed and pure regions assists in suppressing recombination losses in non-fullerene acceptor (NFA)-based organic solar cells. The impact of polymer-NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer-NFA phases to consisting of both intermixed and pure phase. Cyclic voltammetry is employed to investigate the impact of blend morphology upon NFA lowest unoccupied molecular orbital (LUMO) level energetics. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. Raman spectroscopy is used to investigate the origin of energetic shift of NFA LUMO levels. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. The studies focus on addressing whether aggregation-dependent acceptor LUMO level energetics are a general design requirement for both fullerene and NFAs, and quantifying the magnitude, origin, and impact of such energetic shifts upon device performance.
UR - http://hdl.handle.net/10754/656336
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201901254
UR - http://www.scopus.com/inward/record.url?scp=85067385636&partnerID=8YFLogxK
U2 - 10.1002/aenm.201901254
DO - 10.1002/aenm.201901254
M3 - Article
SN - 1614-6832
VL - 9
SP - 1901254
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 27
ER -