TY - JOUR
T1 - Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries
AU - Chen, Fei
AU - Guo, Changxiang
AU - Zhou, Honghao
AU - Shahzad, Muhammad Wakil
AU - Liu, Terence Xiaoteng
AU - Oleksandr, Sokolskyi
AU - Sun, Jining
AU - Dai, Sheng
AU - Xu, Ben Bin
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-23
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Polymer-based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE-based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one-step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
AB - Polymer-based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE-based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one-step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
UR - https://onlinelibrary.wiley.com/doi/10.1002/smll.202106352
UR - http://www.scopus.com/inward/record.url?scp=85123088709&partnerID=8YFLogxK
U2 - 10.1002/smll.202106352
DO - 10.1002/smll.202106352
M3 - Article
C2 - 35060295
SN - 1613-6829
VL - 18
JO - Small
JF - Small
IS - 43
ER -