Surface growth kinematics via local curve evolution

Derek E. Moulton, Alain Goriely

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.
Original languageEnglish (US)
Pages (from-to)81-108
Number of pages28
JournalJournal of Mathematical Biology
Issue number1-2
StatePublished - Nov 18 2012
Externally publishedYes


Dive into the research topics of 'Surface growth kinematics via local curve evolution'. Together they form a unique fingerprint.

Cite this