Abstract
The paper determines the vertices and surface volumes of all rounding polytopes for commonly used rounding methods: The quota method of greatest remainders, and the divisor methods. These methods are used to round continuous non-negative weights summing to one to non-negative integers summing to a predetermined accuracy, e.g. to 100 when rounding to percentages. Our results are of interest when average properties of rounding methods are investigated, and an example from political science is included.
Original language | English (US) |
---|---|
Pages (from-to) | 71-91 |
Number of pages | 21 |
Journal | Linear Algebra and Its Applications |
Volume | 378 |
Issue number | 1-3 |
DOIs | |
State | Published - Feb 1 2004 |
Externally published | Yes |
Keywords
- Apportionment method
- Probability simplex
- Proportional representation
- Rounding method
- Rounding rule
- Seat allocation
- Seat bias
ASJC Scopus subject areas
- Algebra and Number Theory
- Numerical Analysis
- Geometry and Topology
- Discrete Mathematics and Combinatorics