Survival cluster analysis

Paidamoyo Chapfuwa, Chunyuan Li, Nikhil Mehta, Lawrence Carin, Ricardo Henao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

30 Scopus citations

Abstract

Conventional survival analysis approaches estimate risk scores or individualized time-to-event distributions conditioned on covariates. In practice, there is often great population-level phenotypic heterogeneity, resulting from (unknown) subpopulations with diverse risk profiles or survival distributions. As a result, there is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles, while jointly accounting for accurate individualized time-to-event predictions. An approach that addresses this need is likely to improve the characterization of individual outcomes by leveraging regularities in subpopulations, thus accounting for population-level heterogeneity. In this paper, we propose a Bayesian nonparametrics approach that represents observations (subjects) in a clustered latent space, and encourages accurate time-to-event predictions and clusters (subpopulations) with distinct risk profiles. Experiments on real-world datasets show consistent improvements in predictive performance and interpretability relative to existing state-of-the-art survival analysis models.
Original languageEnglish (US)
Title of host publicationACM CHIL 2020 - Proceedings of the 2020 ACM Conference on Health, Inference, and Learning
PublisherAssociation for Computing Machinery, [email protected]
Pages60-68
Number of pages9
ISBN (Print)9781450370462
DOIs
StatePublished - Feb 4 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Survival cluster analysis'. Together they form a unique fingerprint.

Cite this