Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties

Mohamed Abdel Salam, Mohamed Mokhtar, Soha M. Albukhari, Doaa F. Baamer, Leonardo Palmisano, Mariusz Jaremko, Mostafa R. Abukhadra

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved an As (V) retention capacity (213 mg/g) higher than BE (72.7 mg/g) and PN/BE (119.8 mg/g). The enhanced capacity of G.Zn@PN/BE was studied using classic (Langmuir) and advanced equilibrium (monolayer model of one energy) models. Considering the steric properties, the structure of G.Zn@PN/BE demonstrated a higher density of active sites (Nm = 109.8 (20 °C), 108.9 (30 °C), and 67.8 mg/g (40 °C)) than BE and PN/BE. This declared the effect of the integration process in inducing the retention capacity by increasing the quantities of the active sites. The number of adsorbed As (V) ions per site (1.76 up to 2.13) signifies the retention of two or three ions per site by a multi-ionic mechanism. The adsorption energies (from −3.07 to −3.26 kJ/mol) suggested physical retention mechanisms (hydrogen bonding and dipole bonding forces). The adsorption energy, internal energy, and free enthalpy reflected the exothermic, feasible, and spontaneous nature of the retention process. The structure is of significant As (V) uptake capacity in the existence of competitive anions or metal ions.
Original languageEnglish (US)
JournalPolymers
DOIs
StatePublished - Jun 9 2022

Fingerprint

Dive into the research topics of 'Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties'. Together they form a unique fingerprint.

Cite this