Abstract
Quaternary chalcogenides, particular compounds with the stannite structure-type, are of interest for thermoelectrics applications however tellurium-containing compositions have not been extensively investigated. We report on the synthesis and high temperature thermoelectric properties of p-type stannites Cu2.2Zn0.8SnSe4−xTex (x = 0.1, 0.2, 0.3, and 0.4). The compositions for each specimen were confirmed with a combination of Rietveld refinement and elemental analysis. Hall measurements indicate that holes are the dominant charge carriers in these materials. The electrical resistivity shows little temperature dependence up to 500 K and then increases with increasing temperature. The thermal conductivity decreases with increasing temperature with no indication of increase at higher temperatures suggesting a minimal bipolar diffusion effect in the thermal conductivity although these materials possess relatively small band-gaps as compared to that of other stannite compositions. A maximum ZT value of 0.56 was obtained at 700 K for Cu2.2Zn0.8SnSe3.7Te0.3 due to a relatively high Seebeck coefficient and low thermal conductivity.
Original language | English (US) |
---|---|
Pages (from-to) | 9014-9019 |
Number of pages | 6 |
Journal | Dalton Transactions |
Volume | 44 |
Issue number | 19 |
DOIs | |
State | Published - 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Inorganic Chemistry