TY - JOUR
T1 - Synthesis, DFT Molecular Geometry and Anticancer Activity of Symmetrical 2,2′-(2-Oxo-1H-benzo[d]imidazole-1,3(2H)-diyl) Diacetate and Its Arylideneacetohydrazide Derivatives
AU - Dhahri, Manel
AU - Khan, Firdos Alam
AU - Emwas, Abdul-Hamid M.
AU - Alnoman, Rua B.
AU - Jaremko, Mariusz
AU - Rezki, Nadjet
AU - Aouad, Mohamed Reda
AU - Hagar, Mohamed
N1 - KAUST Repository Item: Exported on 2022-04-01
Acknowledgements: The study is supported by Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, and project number IRMC-015-2019.
PY - 2022/3/30
Y1 - 2022/3/30
N2 - To identify new candidate anticancer compounds, we here report the synthesis of benzimidazole derivatives: diethyl 2,2′-(2-oxo-1H-benzo[d]imidazole-1,3(2H)-diyl) diacetate and its arylideneacetohydrazide derivatives, using ultrasonic irradiation and conventional heating. The compounds were confirmed by Nuclear magnetic resonance (NMR) (JEOL, Tokyo, Japan) and Fourier transform infrared spectroscopy (FTIR) spectroscopy (Thermoscientific, Waltham, MA, USA). The molecular structure and electronic properties of the studied compounds were predicted for the acetohydrazide hydrazones. These compounds exist as a mixture of configurational and conformational isomerism as well as amido-amidic acid tautomerism. The NMR spectral data proved the predominance of syn-E amido isomers. In addition, density functional theory (DFT) predicted stability in the gas phase and showed that syn-E amido isomers are the most stable in the presence of an electron donating group, while the anti-isomer is the most stable in the presence of electron-attracting substituents. The anticancer activity of these synthetic compounds 6a, 6b and 6c towards both colon cancer (HCT-116) and cervical cancer (HeLa) cells was examined by MTT assay and DAPI staining. The MTT assay revealed a strong antiproliferative effect against the cancer cells at low concentrations, and interestingly, no significant inhibitory action against the non-cancerous cell line, HEK-293. The IC50 values for HCT-116 were 29.5 + 4.53 µM, 57.9 + 7.01 µM and 40.6 + 5.42 µM for 6a, 6b, and 6c, respectively. The IC50 values for HeLa cells were 57.1 + 6.7 µM, 65.6 + 6.63 µM and 33.8 + 3.54 µM for 6a, 6b, and 6c, respectively. DAPI staining revealed that these synthesized benzimidazole derivatives caused apoptotic cell death in both the colon and cervical cancer cells. Thus, these synthetic compounds demonstrate encouraging anticancer activity as well as being safe for normal human cells, making them attractive candidates as anticancer agents.
AB - To identify new candidate anticancer compounds, we here report the synthesis of benzimidazole derivatives: diethyl 2,2′-(2-oxo-1H-benzo[d]imidazole-1,3(2H)-diyl) diacetate and its arylideneacetohydrazide derivatives, using ultrasonic irradiation and conventional heating. The compounds were confirmed by Nuclear magnetic resonance (NMR) (JEOL, Tokyo, Japan) and Fourier transform infrared spectroscopy (FTIR) spectroscopy (Thermoscientific, Waltham, MA, USA). The molecular structure and electronic properties of the studied compounds were predicted for the acetohydrazide hydrazones. These compounds exist as a mixture of configurational and conformational isomerism as well as amido-amidic acid tautomerism. The NMR spectral data proved the predominance of syn-E amido isomers. In addition, density functional theory (DFT) predicted stability in the gas phase and showed that syn-E amido isomers are the most stable in the presence of an electron donating group, while the anti-isomer is the most stable in the presence of electron-attracting substituents. The anticancer activity of these synthetic compounds 6a, 6b and 6c towards both colon cancer (HCT-116) and cervical cancer (HeLa) cells was examined by MTT assay and DAPI staining. The MTT assay revealed a strong antiproliferative effect against the cancer cells at low concentrations, and interestingly, no significant inhibitory action against the non-cancerous cell line, HEK-293. The IC50 values for HCT-116 were 29.5 + 4.53 µM, 57.9 + 7.01 µM and 40.6 + 5.42 µM for 6a, 6b, and 6c, respectively. The IC50 values for HeLa cells were 57.1 + 6.7 µM, 65.6 + 6.63 µM and 33.8 + 3.54 µM for 6a, 6b, and 6c, respectively. DAPI staining revealed that these synthesized benzimidazole derivatives caused apoptotic cell death in both the colon and cervical cancer cells. Thus, these synthetic compounds demonstrate encouraging anticancer activity as well as being safe for normal human cells, making them attractive candidates as anticancer agents.
UR - http://hdl.handle.net/10754/676037
UR - https://www.mdpi.com/1996-1944/15/7/2544
U2 - 10.3390/ma15072544
DO - 10.3390/ma15072544
M3 - Article
C2 - 35407875
SN - 1996-1944
VL - 15
SP - 2544
JO - Materials
JF - Materials
IS - 7
ER -