TY - JOUR
T1 - Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2,5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid
AU - Wilsens, Carolus H.R.M.
AU - Wullems, Nino J.M.
AU - Gubbels, Erik
AU - Yao, Yefen
AU - Rastogi, Sanjay
AU - Noordover, Bart A.J.
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-16
PY - 2015/4/14
Y1 - 2015/4/14
N2 - The synthesis of renewable 2,5-furandicarboxylic acid-based cross-linked poly(ester amide)s via the polymerization of a 2,5-furandicarboxylic acid based bis(2-oxazoline) monomer (2,5-bis(4,5-dihydrooxazol-2-yl)furan, 2,5-FDCAox) with sebacic acid is reported in this work. It is demonstrated that the amide groups in the 2,5-furandicarboxamide moiety are susceptible to participation in a branching reaction with 2-oxazoline rings. The corresponding enhanced reaction rate decreases the curing times for the preparation of cross-linked polymers compared to systems containing the isophthalic acid based alternative, 1,3-bis(4,5-dihydrooxazol-2-yl)benzene (IAox). The increased tendency to form branches or cross-links in 2,5-FDCAox based systems is attributed to the occurrence of intra-molecular hydrogen bonding of the 2,5-furandicarboxamide moiety. Such an intra-molecular hydrogen bond increases the nucleophilicity of the furanic amide group and makes it more susceptible to participation in an addition reaction with a 2-oxazoline ring. Furthermore, it is demonstrated that the rate of the branching reaction can be enhanced by the addition of triphenyl phosphite as catalyst, resulting in a further decrease of the curing times of the poly(ester amide)s synthesized in this study. Preliminary coating studies indicate that 2,5-furandicarboxylic acid based cross-linked poly(ester amide)s synthesized via the 2-oxazoline ring opening addition reactions with dicarboxylic acids are good candidates for the development of fully renewable cross-linked poly(ester amide)s.
AB - The synthesis of renewable 2,5-furandicarboxylic acid-based cross-linked poly(ester amide)s via the polymerization of a 2,5-furandicarboxylic acid based bis(2-oxazoline) monomer (2,5-bis(4,5-dihydrooxazol-2-yl)furan, 2,5-FDCAox) with sebacic acid is reported in this work. It is demonstrated that the amide groups in the 2,5-furandicarboxamide moiety are susceptible to participation in a branching reaction with 2-oxazoline rings. The corresponding enhanced reaction rate decreases the curing times for the preparation of cross-linked polymers compared to systems containing the isophthalic acid based alternative, 1,3-bis(4,5-dihydrooxazol-2-yl)benzene (IAox). The increased tendency to form branches or cross-links in 2,5-FDCAox based systems is attributed to the occurrence of intra-molecular hydrogen bonding of the 2,5-furandicarboxamide moiety. Such an intra-molecular hydrogen bond increases the nucleophilicity of the furanic amide group and makes it more susceptible to participation in an addition reaction with a 2-oxazoline ring. Furthermore, it is demonstrated that the rate of the branching reaction can be enhanced by the addition of triphenyl phosphite as catalyst, resulting in a further decrease of the curing times of the poly(ester amide)s synthesized in this study. Preliminary coating studies indicate that 2,5-furandicarboxylic acid based cross-linked poly(ester amide)s synthesized via the 2-oxazoline ring opening addition reactions with dicarboxylic acids are good candidates for the development of fully renewable cross-linked poly(ester amide)s.
UR - http://xlink.rsc.org/?DOI=C4PY01609B
UR - http://www.scopus.com/inward/record.url?scp=84925728969&partnerID=8YFLogxK
U2 - 10.1039/c4py01609b
DO - 10.1039/c4py01609b
M3 - Article
SN - 1759-9962
VL - 6
SP - 2707
EP - 2716
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 14
ER -