TY - JOUR
T1 - Synthesis of Copper and Copper Oxide Nanomaterials by Pulsed Electric Field in Water with Various Electrical Conductivities
AU - Hamdan, Ahmad
AU - Glad, Xavier
AU - Cha, Min Suk
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2019-CPF-1975.33
Acknowledgements: This research was funded by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) grant number No. OSR-2019-CPF-1975.33. The APC was funded by KAUST.
PY - 2020/7/10
Y1 - 2020/7/10
N2 - Nanomaterial synthesis is a hot research subject that has been extensively studied in the last two decades. Recently, plasmas in liquid systems have been proposed as an efficient means of synthesizing various types of nanomaterials. The formation processes implicate many physical and chemical phenomena that take place at the electrode surface, as well as in the plasma volume, which renders it difficult to fully understand the underlying mechanisms. In this study, we assess the effect of electric field on nanomaterial synthesis in a system composed of two copper electrodes immersed in water, in the absence of an electrical discharge. The obtained results indicate that various nanostructures, including copper nanoparticles, copper oxide nanowires, and/or hollow nanoparticles, may be produced, depending on the electrical conductivity of the solution (adjusted by adding highly diluted HCl to deionized water). The materials synthesized herein are collected and characterized, and a formation mechanism is proposed. Overall, our results provide insight into the physical and chemical phenomena underlying nanomaterial synthesis in plasmas in liquid.
AB - Nanomaterial synthesis is a hot research subject that has been extensively studied in the last two decades. Recently, plasmas in liquid systems have been proposed as an efficient means of synthesizing various types of nanomaterials. The formation processes implicate many physical and chemical phenomena that take place at the electrode surface, as well as in the plasma volume, which renders it difficult to fully understand the underlying mechanisms. In this study, we assess the effect of electric field on nanomaterial synthesis in a system composed of two copper electrodes immersed in water, in the absence of an electrical discharge. The obtained results indicate that various nanostructures, including copper nanoparticles, copper oxide nanowires, and/or hollow nanoparticles, may be produced, depending on the electrical conductivity of the solution (adjusted by adding highly diluted HCl to deionized water). The materials synthesized herein are collected and characterized, and a formation mechanism is proposed. Overall, our results provide insight into the physical and chemical phenomena underlying nanomaterial synthesis in plasmas in liquid.
UR - http://hdl.handle.net/10754/664159
UR - https://www.mdpi.com/2079-4991/10/7/1347
UR - http://www.scopus.com/inward/record.url?scp=85087841707&partnerID=8YFLogxK
U2 - 10.3390/nano10071347
DO - 10.3390/nano10071347
M3 - Article
C2 - 32664203
SN - 2079-4991
VL - 10
SP - 1347
JO - Nanomaterials
JF - Nanomaterials
IS - 7
ER -