TY - JOUR
T1 - Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner
AU - Wang, B
AU - Pan, B
AU - Tao, Ran
AU - Lubineau, Gilles
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by the National Natural Science Foundation of China (Grant nos. 11272032, 11322220, 11427802 and 11632010), the Aeronautical Science Foundation of China (2016ZD51034), Beijing Nova Program (xx2014B034). We also thank King Abdullah University of Science and Technology (KAUST) for its support.
PY - 2017/3/16
Y1 - 2017/3/16
N2 - The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.
AB - The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.
UR - http://hdl.handle.net/10754/623920
UR - http://iopscience.iop.org/article/10.1088/1361-6501/aa60ad/meta;jsessionid=C2843D59A262478F1B4E84291727E578.c1.iopscience.cld.iop.org
UR - http://www.scopus.com/inward/record.url?scp=85017454667&partnerID=8YFLogxK
U2 - 10.1088/1361-6501/aa60ad
DO - 10.1088/1361-6501/aa60ad
M3 - Article
SN - 0957-0233
VL - 28
SP - 055402
JO - Measurement Science and Technology
JF - Measurement Science and Technology
IS - 5
ER -