Systematic Tuning of 2,1,3-Benzothiadiazole Acceptor Strength by Monofunctionalization with Alkylamine, Thioalkyl, or Alkoxy Groups in Carbazole Donor-Acceptor Polymers

Adam Creamer, Abby Casey, Adam V. Marsh, Munazza Shahid, Mei Gao, Martin Heeney

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

A simple route to the preparation of alkylamine, thioalkyl, and alkoxy monofunctionalized 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole) based monomers is reported from a common fluorinated precursor. Copolymerization with a carbazole comonomer under Suzuki conditions yielded a series of analogous donor-acceptor copolymers in which the only difference was the nature of the heteroatom (N, O, or S) on the benzothiadiazole core. This was shown to have a significant impact on the wavelength and intensity of the intramolecular charge transfer (ICT) absorption peak due to a combination of electronic and steric factors. Substantial differences were also observed in the solar cell performance of blends with PC71BM, with the octylamino substituted polymer exhibiting significantly lower performance than the other two polymers. This polymer also exhibited a reversible change in the optical spectra upon exposure to acid, suggesting potential as a sensing material.
Original languageEnglish (US)
Pages (from-to)2736-2746
Number of pages11
JournalMacromolecules
Volume50
Issue number7
DOIs
StatePublished - Apr 11 2017
Externally publishedYes

ASJC Scopus subject areas

  • Materials Chemistry
  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Systematic Tuning of 2,1,3-Benzothiadiazole Acceptor Strength by Monofunctionalization with Alkylamine, Thioalkyl, or Alkoxy Groups in Carbazole Donor-Acceptor Polymers'. Together they form a unique fingerprint.

Cite this