TY - JOUR
T1 - Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the 'Valdivia Deep' brine pool in the Red Sea
AU - Oliver, Pere Graham
AU - Vestheim, Hege
AU - Antunes, André
AU - Kaartvedt, Stein
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We are grateful to all help from the other Leg 4 Red Sea Expedition 2013 KAUST participants; Ioannis Georgakakis, Thor A. Klevjer, Perdana Karim Prihartato, Anders Rostad and Ingrid Solberg. Leonidas Manousakis and Manolis Kalergis from Hellenic Centre for Marine Research (HCMR) assisted in ROV operations. The captain and crew of RV 'Aegaeo' provided support during the entire cruise. Ohoud Mohammed Eid Alharbi assisted with the electron microscopy. The Red Sea Expedition 2013 was sponsored by KAUST. We also thank Ronald Janssen of the Senckenberg Institution for the loan of comparative material from the RV Meteor expeditions.
PY - 2014/11/11
Y1 - 2014/11/11
N2 - The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of 'guard cilia' and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures. © Marine Biological Association of the United Kingdom, 2014.
AB - The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of 'guard cilia' and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures. © Marine Biological Association of the United Kingdom, 2014.
UR - http://hdl.handle.net/10754/563853
UR - https://www.cambridge.org/core/product/identifier/S0025315414001234/type/journal_article
UR - http://www.scopus.com/inward/record.url?scp=84928487402&partnerID=8YFLogxK
U2 - 10.1017/S0025315414001234
DO - 10.1017/S0025315414001234
M3 - Article
SN - 0025-3154
VL - 95
SP - 523
EP - 535
JO - Journal of the Marine Biological Association of the United Kingdom
JF - Journal of the Marine Biological Association of the United Kingdom
IS - 3
ER -