Tangential stretching rate (TSR) analysis of non premixed reactive flows

Mauro Valorani, Pietro Paolo Ciottoli, Riccardo Malpica Galassi

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.
Original languageEnglish (US)
Pages (from-to)1357-1367
Number of pages11
JournalProceedings of the Combustion Institute
Volume36
Issue number1
DOIs
StatePublished - Oct 16 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Tangential stretching rate (TSR) analysis of non premixed reactive flows'. Together they form a unique fingerprint.

Cite this