TY - GEN
T1 - Task-guided and semantic-aware ranking for academic author-paper correlation inference
AU - Zhang, Chuxu
AU - Yu, Lu
AU - Zhang, Xiangliang
AU - Chawla, Nitesh V.
N1 - Publisher Copyright:
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
PY - 2018
Y1 - 2018
N2 - We study the problem of author-paper correlation inference in big scholarly data, which is to effectively infer potential correlated works for researchers using historical records. Unlike supervised learning algorithms that predict relevance score of author-paper pair via time and memory consuming feature engineering, network embedding methods automatically learn nodes' representations that can be further used to infer author-paper correlation. However, most current models suffer from two limitations: (1) they produce general purpose embeddings that are independent of the specific task; (2) they are usually based on network structure but out of content semantic awareness. To address these drawbacks, we propose a task-guided and semantic-aware ranking model. First, the historical interactions among all correlated authorpaper pairs are formulated as a pairwise ranking loss. Next, the paper's semantic embedding encoded by gated recurrent neural network, together with the author's latent feature is used to score each author-paper pair in ranking loss. Finally, a heterogeneous relations integrative learning module is designed to further augment the model. The evaluation results of extensive experiments on the well known AMiner dataset demonstrate that the proposed model reaches significant better performance, comparing to a number of baselines.
AB - We study the problem of author-paper correlation inference in big scholarly data, which is to effectively infer potential correlated works for researchers using historical records. Unlike supervised learning algorithms that predict relevance score of author-paper pair via time and memory consuming feature engineering, network embedding methods automatically learn nodes' representations that can be further used to infer author-paper correlation. However, most current models suffer from two limitations: (1) they produce general purpose embeddings that are independent of the specific task; (2) they are usually based on network structure but out of content semantic awareness. To address these drawbacks, we propose a task-guided and semantic-aware ranking model. First, the historical interactions among all correlated authorpaper pairs are formulated as a pairwise ranking loss. Next, the paper's semantic embedding encoded by gated recurrent neural network, together with the author's latent feature is used to score each author-paper pair in ranking loss. Finally, a heterogeneous relations integrative learning module is designed to further augment the model. The evaluation results of extensive experiments on the well known AMiner dataset demonstrate that the proposed model reaches significant better performance, comparing to a number of baselines.
UR - http://www.scopus.com/inward/record.url?scp=85055687848&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2018/506
DO - 10.24963/ijcai.2018/506
M3 - Conference contribution
AN - SCOPUS:85055687848
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 3641
EP - 3647
BT - Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
A2 - Lang, Jerome
PB - International Joint Conferences on Artificial Intelligence
T2 - 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Y2 - 13 July 2018 through 19 July 2018
ER -