@inproceedings{e7c2e17f27db4736a57fce392b5a1833,
title = "Teaching UAVs to race: End-to-end regression of agile controls in simulation",
abstract = "Automating the navigation of unmanned aerial vehicles (UAVs) in diverse scenarios has gained much attention in recent years. However, teaching UAVs to fly in challenging environments remains an unsolved problem, mainly due to the lack of training data. In this paper, we train a deep neural network to predict UAV controls from raw image data for the task of autonomous UAV racing in a photo-realistic simulation. Training is done through imitation learning with data augmentation to allow for the correction of navigation mistakes. Extensive experiments demonstrate that our trained network (when sufficient data augmentation is used) outperforms state-of-the-art methods and flies more consistently than many human pilots. Additionally, we show that our optimized network architecture can run in real-time on embedded hardware, allowing for efficient on-board processing critical for real-world deployment. From a broader perspective, our results underline the importance of extensive data augmentation techniques to improve robustness in end-to-end learning setups.",
author = "Matthias M{\"u}ller and Vincent Casser and Neil Smith and Michels, {Dominik L.} and Bernard Ghanem",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 15th European Conference on Computer Vision, ECCV 2018 ; Conference date: 08-09-2018 Through 14-09-2018",
year = "2019",
doi = "10.1007/978-3-030-11012-3_2",
language = "English (US)",
isbn = "9783030110116",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "11--29",
editor = "Stefan Roth and Laura Leal-Taix{\'e}",
booktitle = "Computer Vision – ECCV 2018 Workshops, Proceedings",
address = "Germany",
}