Abstract
The Kingdom of Saudi Arabia (KSA) has vast geothermal energy resources. When developed, these markedly strengthen the country's goals of achieving a carbon-neutral economy. To demonstrate the feasibility and techno-economic performance of small-scale, hydrothermal well doublet systems for direct use in KSA, we perform reservoir and wellbore flow and heat-transport simulations as well as an economic analysis. The maximum permissible flowrate is constrained to avoid thermoelastic fracturing in the near-wellbore region. Reservoir conditions of a sedimentary basin along the Red Sea coast (near Al Wajh) provide an ideal study case to which we add economic parameters considered representative for KSA. We derive a Levelized Cost of Heat (LCOH) ranging from 49 to 128 $/MWh for 50-mD hydrothermal doublet systems with an optimal well spacing of 600 m and a flowrate ranging from 110 kg/s to 50 kg/s. LCOH is strongly influenced by decreasing reservoir transmissivity. Also, a minimum injection temperature is required to avoid thermoelastic fracturing. Our economic analysis further highlights that capacity factor and well-drilling cost have the greatest impact on LCOH. Thus, this study provides a guide and workflow to conduct techno-economic investigations for decision-making, risk mitigation, optimizing geothermal-energy-extraction and economic-performance conditions of hydrothermal doublet systems.
Original language | English (US) |
---|---|
Article number | 102532 |
Journal | Geothermics |
Volume | 105 |
DOIs | |
State | Published - Nov 2022 |
Keywords
- Hydrothermal systems
- Levelized cost of heating (LCOH)
- Techno-economic optimization
- Thermoelastic fracture
- Transmissivity
- Western Saudi Arabia
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Geotechnical Engineering and Engineering Geology
- Geology