Temperature and reaction zone imaging in turbulent swirling dual-fuel flames

M. J. Evans, J. A.M. Sidey, J. Ye, P. R. Medwell, B. B. Dally, E. Mastorakos

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Gaseous and liquid dual-fuel flames present both a practical approach to emissions reduction and a challenge to current state-of-the-art combustion modelling. This paper uses simultaneously imaged temperature and normalised OH signal fields to investigate flame structure and provide experimental data for model validation across a range of swirl-stabilised n-heptane spray flames. These data are obtained by non-linear excitation regime two-line atomic fluorescence (NTLAF) of indium, and planar laser-induced fluorescence (OH-PLIF), respectively. Swirling gas streams are varied by flowrate (63-88% of blow-off), premixed equivalence ratio (including air-only), and by type of gaseous fuel (natural gas and hydrogen). Results are used to describe how hot combustion products interact with the fuel spray: heating and diluting the region above the apex of the spray cone at low air flowrates but drawing fuel into outer branches of the flame with increasing air flowrates. Adding natural gas to the swirling air stream, at a concentration below the lean flammability limit, gives rise to a temperature increase in the outer branches with little effect on the hot region above the apex of the spray, along the burner centreline. The size of this region is significantly reduced; however, using hydrogen. As the concentration of gaseous fuel increases towards the lean flammability limit, peak temperatures shift towards the outer branch of the flame. Exceeding the lean flammability limit, an additional reaction zone begins to form in the premixed swirling stream, adjacent to the outer branch of the swirl flame. Stable outer branches of the swirl flame, however, become less prevalent and the peak temperatures of the spray flame return to burner centreline. This study provides insight into the complex behaviour of dual-fuel flames, a complementary dataset to related, PLIF-only studies and validation data for the development of numerical modelling tools.
Original languageEnglish (US)
Pages (from-to)2159-2166
Number of pages8
JournalProceedings of the Combustion Institute
Issue number2
StatePublished - Jan 1 2019
Externally publishedYes

ASJC Scopus subject areas

  • General Chemical Engineering
  • Mechanical Engineering
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Temperature and reaction zone imaging in turbulent swirling dual-fuel flames'. Together they form a unique fingerprint.

Cite this