Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

Ela Nurlaela, Tatsuya Shinagawa, Muhammad Qureshi, Dattatray Sadashiv Dhawale, Kazuhiro Takanabe

Research output: Contribution to journalArticlepeer-review

156 Scopus citations

Abstract

The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.
Original languageEnglish (US)
Pages (from-to)1713-1722
Number of pages10
JournalACS Catalysis
Volume6
Issue number3
DOIs
StatePublished - Feb 10 2016

Fingerprint

Dive into the research topics of 'Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide'. Together they form a unique fingerprint.

Cite this