TY - JOUR
T1 - Temperature stability and electrical properties in La-doped KNN-based ceramics
AU - Lv, Xiang
AU - Wu, Jiagang
AU - Zhu, Jianguo
AU - Xiao, Dingquan
AU - Zhang, Xixiang
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC Nos. 51722208 and 51332003) and the Fundamental Research Funds for the Central Universities (2012017yjsy111). Authors thank Mrs. Wang Hui (Analytical & Testing Center of Sichuan University) for performing the FE-SEM measurements.
PY - 2018/4/23
Y1 - 2018/4/23
N2 - To improve the temperature stability and electrical properties of KNN-based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.04(Bi1-xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral-tetragonal (R-T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue-free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R-T phase boundary and the appropriate addition of La3+.
AB - To improve the temperature stability and electrical properties of KNN-based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.04(Bi1-xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral-tetragonal (R-T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue-free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R-T phase boundary and the appropriate addition of La3+.
UR - http://hdl.handle.net/10754/627865
UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.15695
UR - http://www.scopus.com/inward/record.url?scp=85049203166&partnerID=8YFLogxK
U2 - 10.1111/jace.15695
DO - 10.1111/jace.15695
M3 - Article
SN - 0002-7820
VL - 101
SP - 4084
EP - 4094
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 9
ER -