TY - JOUR
T1 - The α1 subunit EGL-19, the α2/δ subunit UNC-36, and the β subunit CCB-1 underlie voltage-dependent calcium currents in Caenorhabditis elegans striated muscle
AU - Lainé, Viviane
AU - Frøkjær-Jensen, Christian
AU - Couchoux, Harold
AU - Jospin, Maëlle
PY - 2011/10/21
Y1 - 2011/10/21
N2 - Voltage-gated calcium channels, which play key roles in many physiological processes, are composed of a pore-forming α1 subunit associated with up to three auxiliary subunits. In vertebrates, the role of auxiliary subunits has mostly been studied in heterologous systems, mainly because of the severe phenotypes of knock-out animals. The genetic model Caenorhabditis elegans has all main types of voltage-gated calcium channels and strong loss-of-function mutations in all pore-forming and auxiliary subunits; it is therefore a useful model to investigate the roles of auxiliary subunits in their native context. By recording calcium currents from channel and auxiliary subunit mutants, we molecularly dissected the voltage-dependent calcium currents in striated muscle of C. elegans. We show that EGL-19 is the only α1 subunit that carries calcium currents in muscle cells. We then demonstrate that the α2/δ subunit UNC-36 modulates the voltage dependence, the activation kinetics, and the conductance of calcium currents, whereas another α2/δ subunit TAG-180 has no effect. Finally, we characterize mutants of the two β subunits, CCB-1 and CCB-2. CCB-1 is necessary for viability, and voltage-dependent calcium currents are abolished in the absence of CCB-1 whereas CCB-2 does not affect currents. Altogether these results show that EGL-19, UNC-36, and CCB-1 underlie voltage-dependent calcium currents in C. elegans striated muscle.
AB - Voltage-gated calcium channels, which play key roles in many physiological processes, are composed of a pore-forming α1 subunit associated with up to three auxiliary subunits. In vertebrates, the role of auxiliary subunits has mostly been studied in heterologous systems, mainly because of the severe phenotypes of knock-out animals. The genetic model Caenorhabditis elegans has all main types of voltage-gated calcium channels and strong loss-of-function mutations in all pore-forming and auxiliary subunits; it is therefore a useful model to investigate the roles of auxiliary subunits in their native context. By recording calcium currents from channel and auxiliary subunit mutants, we molecularly dissected the voltage-dependent calcium currents in striated muscle of C. elegans. We show that EGL-19 is the only α1 subunit that carries calcium currents in muscle cells. We then demonstrate that the α2/δ subunit UNC-36 modulates the voltage dependence, the activation kinetics, and the conductance of calcium currents, whereas another α2/δ subunit TAG-180 has no effect. Finally, we characterize mutants of the two β subunits, CCB-1 and CCB-2. CCB-1 is necessary for viability, and voltage-dependent calcium currents are abolished in the absence of CCB-1 whereas CCB-2 does not affect currents. Altogether these results show that EGL-19, UNC-36, and CCB-1 underlie voltage-dependent calcium currents in C. elegans striated muscle.
UR - http://www.scopus.com/inward/record.url?scp=80054711361&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111.256149
DO - 10.1074/jbc.M111.256149
M3 - Article
C2 - 21878625
AN - SCOPUS:80054711361
SN - 0021-9258
VL - 286
SP - 36180
EP - 36187
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 42
ER -