The capacity of injective semi-deterministic two-way channels

Anas Chaaban, Lav R. Varshney, Mohamed Slim Alouini

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

The capacity region of the class of injective semi-deterministic two-way channels (TWCs) is investigated in this paper. To characterize this capacity, two conditions under which Shannon's bounds on the capacity region of TWCs are tight are first given. Using those conditions, it is shown that the capacity of this class of TWCs is characterized by the rectangle formed by the one-way capacities. This proves that adaptation is not needed for this class. This class encompasses, among others, all memoryless additive channels with input-independent noise, and hence, adaptation is useless for all such channels. This also shows that there exist continuous additive TWCs not of the exponential family type for which adaptation is not necessary. An example of a Cauchy TWC is given, and its capacity is characterized in closed form under a logarithmic constraint. Finally, the impact of the dependence of the noise on the inputs is discussed, and it is shown that adaptation may still be useless in such cases.

Original languageEnglish (US)
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages431-435
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - Aug 9 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: Jun 25 2017Jun 30 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period06/25/1706/30/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'The capacity of injective semi-deterministic two-way channels'. Together they form a unique fingerprint.

Cite this