TY - JOUR
T1 - The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface
AU - Gallo Junior, Adair
AU - Farinha, Andreia S. F.
AU - Dinis Veloso Guerreiro, Miguel
AU - Emwas, Abdul-Hamid M.
AU - Santana, Adriano
AU - Nielsen, Robert J.
AU - Goddard, William A.
AU - Mishra, Himanshu
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2016-CRG5-2992
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (#OSR-2016-CRG5-2992). The authors thank Mr Ivan Gromicho, Scientific Illustrator at KAUST, for preparing Fig. 1. The authors also thank Professor Richard Saykally and Professor Evan Williams (University of California Berkeley), and Dr Manuel Monge Palacios (KAUST) for fruitful discussions. This research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.
PY - 2019
Y1 - 2019
N2 - The recent application of electrosprays to characterize the air–water interface, along with the reports on dramatically accelerated chemical reactions in aqueous electrosprays, have sparked a broad interest. Herein, we report on complementary laboratory and in silico experiments tracking the oligomerization of isoprene, an important biogenic gas, in electrosprays and isoprene–water emulsions to differentiate the contributions of interfacial effects from those of high voltages leading to charge-separation and concentration of reactants in the electrosprays. To this end, we employed electrospray ionization mass spectrometry, proton nuclear magnetic resonance, ab initio calculations and molecular dynamics simulations. We found that the oligomerization of isoprene in aqueous electrosprays involved minimally hydrated and highly reactive hydronium ions. Those conditions, however, are non-existent at pristine air–water interfaces and oil–water emulsions under normal temperature and pressure. Thus, electrosprays should be complemented with surface-specific platforms and theoretical methods to reliably investigate chemistries at the pristine air–water interface.
AB - The recent application of electrosprays to characterize the air–water interface, along with the reports on dramatically accelerated chemical reactions in aqueous electrosprays, have sparked a broad interest. Herein, we report on complementary laboratory and in silico experiments tracking the oligomerization of isoprene, an important biogenic gas, in electrosprays and isoprene–water emulsions to differentiate the contributions of interfacial effects from those of high voltages leading to charge-separation and concentration of reactants in the electrosprays. To this end, we employed electrospray ionization mass spectrometry, proton nuclear magnetic resonance, ab initio calculations and molecular dynamics simulations. We found that the oligomerization of isoprene in aqueous electrosprays involved minimally hydrated and highly reactive hydronium ions. Those conditions, however, are non-existent at pristine air–water interfaces and oil–water emulsions under normal temperature and pressure. Thus, electrosprays should be complemented with surface-specific platforms and theoretical methods to reliably investigate chemistries at the pristine air–water interface.
UR - http://hdl.handle.net/10754/631177
UR - https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc05538f#!divAbstract
UR - http://www.scopus.com/inward/record.url?scp=85062301297&partnerID=8YFLogxK
U2 - 10.1039/C8SC05538F
DO - 10.1039/C8SC05538F
M3 - Article
C2 - 30996971
SN - 2041-6520
VL - 10
SP - 2566
EP - 2577
JO - Chemical Science
JF - Chemical Science
IS - 9
ER -