TY - GEN
T1 - The cylindrical Riemann problem in magnetohydrodynamics: A case study
AU - Mostert, W.
AU - Wheatley, V.
AU - Hingee, M.
AU - Samtaney, Ravi
N1 - KAUST Repository Item: Exported on 2020-12-24
Acknowledgements: This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number
DP120102378). W. Mostert is supported by an Australian Postgraduate Award. Dr Wheatley is the recipient of an Australian
Research Council Discovery Early Career Researcher Award
(project number DE120102942). Prof. Samtaney is partially
support by a KAUST Base Research Award.
PY - 2012/1/1
Y1 - 2012/1/1
N2 - A significant problem in inertial confinement fusion is that the material interfaces in the converging flow are subject to the Richtmyer-Meshkov instability when they are impulsively accelerated. It has been demonstrated that this instability can be suppressed in magnetohydrodynamic (MHD) flows at least for flow configurations with rectangular geometry. In order to understand the flow induced by attempting such suppression in converging flow configurations, it is necessary first to investigate the underlying base-flows, the canonical versions of which correspond to converging cylindrical and spherical MHD Riemann problems. Here, we present the numerical solution to one such case: the cylindrical MHD Riemann problem shown below with a uniform initial magnetic field of strength β = 2 and a pressure ratio of three across the interface. The wave structure is initially characterised by two outward- and two inward-moving waves, but as the solution develops, discontinuities form along the waves, producing a more complex flow structure. We investigate the different flow structures, their formation times, and identify how the compression achieved at the centre of the implosion is affected by the magnetic field.
AB - A significant problem in inertial confinement fusion is that the material interfaces in the converging flow are subject to the Richtmyer-Meshkov instability when they are impulsively accelerated. It has been demonstrated that this instability can be suppressed in magnetohydrodynamic (MHD) flows at least for flow configurations with rectangular geometry. In order to understand the flow induced by attempting such suppression in converging flow configurations, it is necessary first to investigate the underlying base-flows, the canonical versions of which correspond to converging cylindrical and spherical MHD Riemann problems. Here, we present the numerical solution to one such case: the cylindrical MHD Riemann problem shown below with a uniform initial magnetic field of strength β = 2 and a pressure ratio of three across the interface. The wave structure is initially characterised by two outward- and two inward-moving waves, but as the solution develops, discontinuities form along the waves, producing a more complex flow structure. We investigate the different flow structures, their formation times, and identify how the compression achieved at the centre of the implosion is affected by the magnetic field.
UR - http://hdl.handle.net/10754/666624
UR - https://research.kaust.edu.sa/en/publications/the-cylindrical-riemann-problem-in-magnetohydrodynamics-a-case-st
UR - http://www.scopus.com/inward/record.url?scp=84959018998&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9780646583730
BT - 18th Australasian Fluid Mechanics Conference, AFMC 2012
PB - Australasian Fluid Mechanics Society
ER -