TY - JOUR
T1 - The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes
AU - Wessells, Colin D.
AU - Peddada, Sandeep V.
AU - McDowell, Matthew T.
AU - Huggins, Robert A.
AU - Cui, Yi
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-l1-001-12
Acknowledgements: The authors acknowledge partial support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-l1-001-12). A portion of this work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515 through the SLAC National Accelerator Laboratory LDRD project.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012
Y1 - 2012
N2 - Recent battery research has focused on the high power and energy density needed for portable electronics and vehicles, but the requirements for grid-scale energy storage are different, with emphasis on low cost, long cycle life, and safety. Open framework materials with the Prussian Blue crystal structure offer the high power capability, ultra-long cycle life, and scalable, low cost synthesis and operation that are necessary for storage systems to integrate transient energy sources, such as wind and solar, with the electrical grid. We have demonstrated that two open framework materials, copper hexacyanoferrate and nickel hexacyanoferrate, can reversibly intercalate lithium, sodium, potassium, and ammonium ions at high rates. These materials can achieve capacities of up to 60 mAhg. The porous, nanoparticulate morphology of these materials, synthesized by the use of simple and inexpensive methods, results in remarkable rate capabilities: e.g. copper hexacyanoferrate retains 84 of its maximum capacity during potassium cycling at a very high (41.7C) rate, while nickel hexacyanoferrate retains 66 of its maximum capacity while cycling either sodium or potassium at this same rate. These materials show excellent stability during the cycling of sodium and potassium, with minimal capacity loss after 500 cycles. © 2011 The Electrochemical Society.
AB - Recent battery research has focused on the high power and energy density needed for portable electronics and vehicles, but the requirements for grid-scale energy storage are different, with emphasis on low cost, long cycle life, and safety. Open framework materials with the Prussian Blue crystal structure offer the high power capability, ultra-long cycle life, and scalable, low cost synthesis and operation that are necessary for storage systems to integrate transient energy sources, such as wind and solar, with the electrical grid. We have demonstrated that two open framework materials, copper hexacyanoferrate and nickel hexacyanoferrate, can reversibly intercalate lithium, sodium, potassium, and ammonium ions at high rates. These materials can achieve capacities of up to 60 mAhg. The porous, nanoparticulate morphology of these materials, synthesized by the use of simple and inexpensive methods, results in remarkable rate capabilities: e.g. copper hexacyanoferrate retains 84 of its maximum capacity during potassium cycling at a very high (41.7C) rate, while nickel hexacyanoferrate retains 66 of its maximum capacity while cycling either sodium or potassium at this same rate. These materials show excellent stability during the cycling of sodium and potassium, with minimal capacity loss after 500 cycles. © 2011 The Electrochemical Society.
UR - http://hdl.handle.net/10754/599902
UR - https://iopscience.iop.org/article/10.1149/2.060202jes
UR - http://www.scopus.com/inward/record.url?scp=84855327156&partnerID=8YFLogxK
U2 - 10.1149/2.060202jes
DO - 10.1149/2.060202jes
M3 - Article
SN - 0013-4651
VL - 159
SP - A98-A103
JO - Journal of The Electrochemical Society
JF - Journal of The Electrochemical Society
IS - 2
ER -