TY - JOUR
T1 - The effect of Schiff base network on the separation performance of thin film nanocomposite forward osmosis membranes
AU - Akther, Nawshad
AU - Lim, Sungil
AU - Tran, Van Huy
AU - Phuntsho, Sherub
AU - Yang, Yanqin
AU - Bae, Tae Hyun
AU - Ghaffour, Noreddine
AU - Shon, Ho Kyong
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/6/15
Y1 - 2019/6/15
N2 - In this study, Schiff base network-1 (SNW-1) nanoparticles, which are covalent organic frameworks (COFs), were used as fillers in the polyamide (PA) active layer to elevate the performance of thin-film nanocomposite (TFN) forward osmosis (FO) membranes. The TFN membranes were prepared by interfacial polymerization (IP) of m-phenylenediamine (MPD) and trimesoyl chloride (TMC), and the SNW-1 nanoparticles were dispersed in the MPD aqueous solution at various concentrations. The secondary amine groups of SNW-1 nanoparticles reacted with the acyl chloride groups of TMC during the IP reaction to form strong covalent/amide bonds, which facilitated better interface integration of SNW-1 nanoparticles in the PA layer. Additionally, the incorporation of amine-rich SNW-1 nanoparticles into the TFN membranes improved their surface hydrophilicity, and the porous structure of SNW-1 nanoparticles offered additional channels for transport of water molecules. The TFN0.005 membrane with a SNW-1 nanoparticle loading of 0.005 wt% demonstrated a higher water flux than that of pristine TFC membrane in both AL-FS (12.0 vs. 9.3 L m−2 h−1) and AL-DS (25.2 vs. 19.4 L m−2 h−1) orientations when they were tested with deionized water and 0.5 M NaCl as feed and draw solution, respectively.
AB - In this study, Schiff base network-1 (SNW-1) nanoparticles, which are covalent organic frameworks (COFs), were used as fillers in the polyamide (PA) active layer to elevate the performance of thin-film nanocomposite (TFN) forward osmosis (FO) membranes. The TFN membranes were prepared by interfacial polymerization (IP) of m-phenylenediamine (MPD) and trimesoyl chloride (TMC), and the SNW-1 nanoparticles were dispersed in the MPD aqueous solution at various concentrations. The secondary amine groups of SNW-1 nanoparticles reacted with the acyl chloride groups of TMC during the IP reaction to form strong covalent/amide bonds, which facilitated better interface integration of SNW-1 nanoparticles in the PA layer. Additionally, the incorporation of amine-rich SNW-1 nanoparticles into the TFN membranes improved their surface hydrophilicity, and the porous structure of SNW-1 nanoparticles offered additional channels for transport of water molecules. The TFN0.005 membrane with a SNW-1 nanoparticle loading of 0.005 wt% demonstrated a higher water flux than that of pristine TFC membrane in both AL-FS (12.0 vs. 9.3 L m−2 h−1) and AL-DS (25.2 vs. 19.4 L m−2 h−1) orientations when they were tested with deionized water and 0.5 M NaCl as feed and draw solution, respectively.
KW - Covalent organic frameworks (COFs)
KW - Forward osmosis (FO)
KW - Interfacial polymerization (IP)
KW - Schiff base network-1 (SNW-1)
KW - Thin-film nanocomposite (TFN) membrane
UR - http://www.scopus.com/inward/record.url?scp=85061718429&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2019.02.034
DO - 10.1016/j.seppur.2019.02.034
M3 - Article
AN - SCOPUS:85061718429
SN - 1383-5866
VL - 217
SP - 284
EP - 293
JO - Separation and Purification Technology
JF - Separation and Purification Technology
ER -