The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water

Ahmad Hamdan, Min Suk Cha

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids. © 2016 IOP Publishing Ltd.
Original languageEnglish (US)
Pages (from-to)245203
JournalJournal of Physics D: Applied Physics
Volume49
Issue number24
DOIs
StatePublished - May 17 2016

Fingerprint

Dive into the research topics of 'The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water'. Together they form a unique fingerprint.

Cite this