Abstract
We present measurements of photoluminescence (PL) and optical absorption of the phenylated PPV (poly(p-phenylene vinylene)) derivative poly(1,3-phenylene diphenyl-vinylene) (m-PPV-DP) and the model compound tetraphenylethylene (TPE). We also assess the effect of the di-phenylsubstitution in both m-PPV-DP and PDPV (poly-(4,4′-diphenylene diphenylvinylene)) on their photostability. Our work confirms that the meta-link in m-PPV-DP breaks the conjugation and leaves the polymer with a longest fully conjugated unit identical to the molecule TPE. This allows to transfer our quantum chemical modelling results for TPE to m-PPV-DP and to show that the photophysical properties of the polymer are controlled by ring-torsional relaxation of the excited states rather than by effects of chain-extended conjugation. The UV-photodegradation is shown to be slowed down significantly by the phenylation in comparison to PPV as is evident from the measurements of the PL decay. We show by means of FTIR studies that the degradation is an oxidation process.
Original language | English (US) |
---|---|
Pages (from-to) | 145-149 |
Number of pages | 5 |
Journal | Optical Materials |
Volume | 9 |
Issue number | 1-4 |
DOIs | |
State | Published - Jan 1998 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Computer Science
- Atomic and Molecular Physics, and Optics
- Spectroscopy
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
- Electrical and Electronic Engineering