The exposure of the Great Barrier Reef to ocean acidification

Mathieu Mongin, Mark E. Baird, Bronte Tilbrook, Richard J. Matear, Andrew Lenton, Mike Herzfeld, Karen Wild-Allen, Jenny Skerratt, Nugzar Margvelashvili, Barbara J. Robson, Carlos M. Duarte, Malin S. M. Gustafsson, Peter J. Ralph, Andrew D. L. Steven

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.
Original languageEnglish (US)
JournalNature Communications
Volume7
Issue number1
DOIs
StatePublished - Feb 23 2016

Fingerprint

Dive into the research topics of 'The exposure of the Great Barrier Reef to ocean acidification'. Together they form a unique fingerprint.

Cite this