Abstract
Transition-metal perovskite oxides possess rich functionalities in the fields of ferroelectrics, piezoelectrics, superconductors, dielectrics, fuel cells and photocatalysis. Nano-facet control of the cubic ATiO3 (A: a divalent cation) phase, a typical perovskite oxide, may result in new properties or phenomena not observable in the bulk material. Herein, we first report a puzzle-like 3D hierarchical structure constructed with K0.5La0.5TiO3 nanosheets. Surprisingly, K0.5La0.5TiO3 has a cubic symmetry similar to a SrTiO3 perovskite. The unusual phase is synthesized by a simple one-pot hydrothermal strategy without using any structure-directing agent. After modest acidification, the assembled 3D hierarchical structure is etched into a core-shell nanostructure which consists of a crystalline K0.5La0.5TiO3 core and an amorphous TiO2 shell. The acid-treated sample exhibits remarkably enhanced photocatalytic H2 production, which is over 60 times higher than the pristine sample.
Original language | English (US) |
---|---|
Pages (from-to) | 18665-18670 |
Number of pages | 6 |
Journal | Dalton transactions |
Volume | 44 |
Issue number | 42 |
DOIs | |
State | Published - 2015 |
ASJC Scopus subject areas
- Inorganic Chemistry