The image charge effect and vibron-assisted processes in Coulomb blockade transport: A first principles approach

A. M. Souza*, I. Rungger, U. Schwingenschlögl, S. Sanvito

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We present a combination of density functional theory and of both non-equilibrium Green's function formalism and a Master equation approach to accurately describe quantum transport in molecular junctions in the Coulomb blockade regime. We apply this effective first-principles approach to reproduce the experimental results of Perrin et al., [Nat. Nanotechnol., 2013, 8, 282] for the transport properties of a Au-(Zn)porphyrin-Au molecular junction. We demonstrate that energy level renormalization due to the image charge effect is crucial to the prediction of the current onset in the current-voltage, I-V, curves as a function of electrode separation. Furthermore, we show that for voltages beyond that setting the current onset, the slope of the I-V characteristics is determined by the interaction of the charge carriers with molecular vibrations. This corresponds to current-induced local heating, which may also lead to an effective reduced electronic coupling. Overall our scheme provides a fully ab initio description of quantum transport in the Coulomb blockade regime in the presence of electron-vibron coupling.

Original languageEnglish (US)
Pages (from-to)19231-19240
Number of pages10
JournalNanoscale
Volume7
Issue number45
DOIs
StatePublished - Dec 7 2015

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'The image charge effect and vibron-assisted processes in Coulomb blockade transport: A first principles approach'. Together they form a unique fingerprint.

Cite this