The impact of Eu3+ ion substitution on dielectric properties of Y3-xEuxAl5O12 (0.00x0.10) ceramics

M.A. Almessiere, B. Unal, A. Baykal, I. Ercan, M. Yildiz

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This study reported the effect of Eu substitutions on the conductivity and dielectric properties of Y3−xEuxAl5O12 (0.0 ≤ x ≤ 0.1), YAG:xEu3+. All products were fabricated by solid state route. The formation of YAG was approved through X-ray diffraction powder diffraction and high-resolution transmission electron microscope. It was found that the lattice parameters are increasing with increase the substitution content due to the difference in ionic radii between Y3+ and Eu3+. Electrical and dielectric properties of YAG (Y3Al5O12) and YAG:xEu3+ ceramics were investigated extensively for a variety of concentrations (0.00 ≤ x ≤ 0.1) of the substitutional Eu3+ ion from the 4f lanthanide group. The temperature dependence of dielectric loss, dielectric constant, loss tangent and ac/dc conductivity were examined up to 5.0 MHz to understand the electrical and dielectric properties for both doped and undoped YAG ceramics. The experimental results revealed that Eu3+ ion substitutions (especially x = 0.05) in YAG ceramics meaningfully influence the lossy mechanisms, conductivity and dielectric constant which is probably due to the contribution to the conduction mechanism of the 4f–Eu and 3d–Al ions. So, this can be incorporated at the exceptional sites of both Oh (octahedral) and Td (tetrahedral) symmetries in YAG: xEu3+ ceramics.
Original languageEnglish (US)
Pages (from-to)2489-2500
Number of pages12
JournalJOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
Volume30
Issue number3
DOIs
StatePublished - Dec 10 2018
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'The impact of Eu3+ ion substitution on dielectric properties of Y3-xEuxAl5O12 (0.00x0.10) ceramics'. Together they form a unique fingerprint.

Cite this