TY - JOUR
T1 - The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates
AU - Haschke, Jan
AU - Seif, Johannes P.
AU - Riesen, Yannick
AU - Tomasi, Andrea
AU - Cattin, Jean
AU - Tous, Loïc
AU - Choulat, Patrick
AU - Aleman, Monica
AU - Cornagliotti, Emanuele
AU - Uruena, Angel
AU - Russell, Richard
AU - Duerinckx, Filip
AU - Champliaud, Jonathan
AU - Levrat, Jacques
AU - Abdallah, Amir A.
AU - Aïssa, Brahim
AU - Tabet, Nouar
AU - Wyrsch, Nicolas
AU - Despeisse, Matthieu
AU - Szlufcik, Jozef
AU - De Wolf, Stefaan
AU - Ballif, Christophe
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank Eleonora Annigoni and Alessandro Virtuani for fruitful discussions, and Virginia Unkefer from King Abdullah University of Science and Technology (KAUST) for manuscript editing. This work was supported by Qatar Foundation, and the European Commission (FP7 Project CHEETAH, Contract No. 609788).
PY - 2017
Y1 - 2017
N2 - Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.
AB - Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.
UR - http://hdl.handle.net/10754/625028
UR - http://pubs.rsc.org/en/Content/ArticleLanding/2017/EE/C7EE00286F#!divAbstract
UR - http://www.scopus.com/inward/record.url?scp=85022334320&partnerID=8YFLogxK
U2 - 10.1039/c7ee00286f
DO - 10.1039/c7ee00286f
M3 - Article
SN - 1754-5692
VL - 10
SP - 1196
EP - 1206
JO - Energy Environ. Sci.
JF - Energy Environ. Sci.
IS - 5
ER -