TY - JOUR
T1 - The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes
AU - Boufflet, Pierre
AU - Bovo, Gianluca
AU - Occhi, Luca
AU - Yuan, Hua Kang
AU - Fei, Zhuping
AU - Han, Yang
AU - Anthopoulos, Thomas D.
AU - Stavrinou, Paul N.
AU - Heeney, Martin
N1 - Generated from Scopus record by KAUST IRTS on 2023-02-14
PY - 2018/10/1
Y1 - 2018/10/1
N2 - The ability to modify or enhance the dielectric constant of semiconducting polymers can prove valuable for a range of optoelectronic and microelectronic applications. In the case of organic photovoltaics, increasing the dielectric constant of the active layer has often been suggested as a method to control charge generation, recombination dynamics, and ultimately, the power conversion efficiencies. In this contribution, the impact that the degree and pattern of fluorination has on the dielectric constant of poly(3-octylthiophene) (P3OT), a more soluble analogue of the widely studied conjugated material poly(3-hexylthiophene), is explored. P3OT and its backbone-fluorinated analogue, F-P3OT, are compared along with a block and alternating copolymer version of these materials. It is found that the dielectric constant of the polymer thin films increases as the degree of backbone fluorination increases, in a trend consistent with density functional theory calculations of the dipole moment.
AB - The ability to modify or enhance the dielectric constant of semiconducting polymers can prove valuable for a range of optoelectronic and microelectronic applications. In the case of organic photovoltaics, increasing the dielectric constant of the active layer has often been suggested as a method to control charge generation, recombination dynamics, and ultimately, the power conversion efficiencies. In this contribution, the impact that the degree and pattern of fluorination has on the dielectric constant of poly(3-octylthiophene) (P3OT), a more soluble analogue of the widely studied conjugated material poly(3-hexylthiophene), is explored. P3OT and its backbone-fluorinated analogue, F-P3OT, are compared along with a block and alternating copolymer version of these materials. It is found that the dielectric constant of the polymer thin films increases as the degree of backbone fluorination increases, in a trend consistent with density functional theory calculations of the dipole moment.
UR - https://onlinelibrary.wiley.com/doi/10.1002/aelm.201700375
UR - http://www.scopus.com/inward/record.url?scp=85035226389&partnerID=8YFLogxK
U2 - 10.1002/aelm.201700375
DO - 10.1002/aelm.201700375
M3 - Article
SN - 2199-160X
VL - 4
JO - Advanced Electronic Materials
JF - Advanced Electronic Materials
IS - 10
ER -