The instability characteristics of lean premixed hydrogen and syngas flames stabilized on a meso-scale bluff-body

Yu Jeong Kim, Bok Jik Lee, Hong G. Im

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624104473
DOIs
StatePublished - 2017
Event55th AIAA Aerospace Sciences Meeting - Grapevine, United States
Duration: Jan 9 2017Jan 13 2017

Publication series

NameAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Conference

Conference55th AIAA Aerospace Sciences Meeting
Country/TerritoryUnited States
CityGrapevine
Period01/9/1701/13/17

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'The instability characteristics of lean premixed hydrogen and syngas flames stabilized on a meso-scale bluff-body'. Together they form a unique fingerprint.

Cite this