TY - JOUR
T1 - The nonconforming virtual element method
AU - Ayuso de Dios, Blanca
AU - Lipnikov, Konstantin
AU - Manzini, Gianmarco
N1 - KAUST Repository Item: Exported on 2021-04-02
Acknowledged KAUST grant number(s): BAS/1/1636-01-01
Acknowledgements: The first author is in-debt with Proff. F. Brezzi and D. Marini from Pavia, for the multiple and fruitful discussions and specially for the encouragement to carry out this work. The work of the first author was partially supported by KAUST grants BAS/1/1636-01-01 and Pocket ID 1000000193. She thanks KAUST for the support and hospitality, where part of the work was completed while she was Research Scientist with Peter Markowich. The work of the second and third authors was partially supported by the Laboratory Directed Research and Development Program (LDRD), U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2016/5/23
Y1 - 2016/5/23
N2 - We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.
AB - We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.
UR - http://hdl.handle.net/10754/668479
UR - http://www.esaim-m2an.org/10.1051/m2an/2015090
UR - http://www.scopus.com/inward/record.url?scp=84971420023&partnerID=8YFLogxK
U2 - 10.1051/m2an/2015090
DO - 10.1051/m2an/2015090
M3 - Article
SN - 0764-583X
VL - 50
SP - 879
EP - 904
JO - ESAIM: Mathematical Modelling and Numerical Analysis
JF - ESAIM: Mathematical Modelling and Numerical Analysis
IS - 3
ER -