The possible physical mechanism for the EAP–SR co-action

Zhiqiang Gong, Guolin Feng, Muhammad Mubashar Dogar, Gang Huang

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA–WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
Original languageEnglish (US)
Pages (from-to)1499-1516
Number of pages18
JournalClimate Dynamics
Volume51
Issue number4
DOIs
StatePublished - Nov 17 2017

Fingerprint

Dive into the research topics of 'The possible physical mechanism for the EAP–SR co-action'. Together they form a unique fingerprint.

Cite this