TY - JOUR
T1 - The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body
AU - Kedia, Kushal S.
AU - Ghoniem, Ahmed F.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-11-010-01
Acknowledgements: This work was supported by King Abdullah University of Science and Technology (KAUST) award number KUS-11-010-01. We would like to acknowledge Dr. Habib Najm, Dr. Cosmin Safta and Dr. Jaideep Ray (Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA) for their major contribution towards the SAMR tool development.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2015
Y1 - 2015
N2 - © 2014 The Combustion Institute. The objective of this work is to investigate the unsteady response of a bluff-body stabilized laminar premixed flame to harmonic inlet velocity excitation. A time series analysis was performed to analyze the physical sequence of events at a fixed longitudinal forcing frequency of 100 Hz for cases with (1) two different equivalence ratios and (2) two different thermal properties of the stabilizing bluff-body. It was observed that conjugate heat exchange between the heat conducting bluff-body and the surrounding reacting flow has a crucial impact on the dynamic response. The flame area and anchoring location, the net conjugate heat transfer and the total heat release underwent significant oscillations. The latter was mean shifted and had multiple frequencies. The burning velocity varied significantly along the flame length and the recirculation zone underwent complex changes in its shape and size during an unsteady cycle. The lower equivalence ratio case exhibited vortex shedding after an initial symmetric response with periodic flame extinction and re-ignition along its surface, unlike the higher equivalence ratio case. The metal/ceramic bluff-body showed a net heat transfer directed from/to the bluff-body, to/from the reacting flow during an unsteady cycle, resulting in a significantly different flame response for the two otherwise equivalent cases.
AB - © 2014 The Combustion Institute. The objective of this work is to investigate the unsteady response of a bluff-body stabilized laminar premixed flame to harmonic inlet velocity excitation. A time series analysis was performed to analyze the physical sequence of events at a fixed longitudinal forcing frequency of 100 Hz for cases with (1) two different equivalence ratios and (2) two different thermal properties of the stabilizing bluff-body. It was observed that conjugate heat exchange between the heat conducting bluff-body and the surrounding reacting flow has a crucial impact on the dynamic response. The flame area and anchoring location, the net conjugate heat transfer and the total heat release underwent significant oscillations. The latter was mean shifted and had multiple frequencies. The burning velocity varied significantly along the flame length and the recirculation zone underwent complex changes in its shape and size during an unsteady cycle. The lower equivalence ratio case exhibited vortex shedding after an initial symmetric response with periodic flame extinction and re-ignition along its surface, unlike the higher equivalence ratio case. The metal/ceramic bluff-body showed a net heat transfer directed from/to the bluff-body, to/from the reacting flow during an unsteady cycle, resulting in a significantly different flame response for the two otherwise equivalent cases.
UR - http://hdl.handle.net/10754/599952
UR - https://linkinghub.elsevier.com/retrieve/pii/S1540748914001655
UR - http://www.scopus.com/inward/record.url?scp=84937641695&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2014.06.007
DO - 10.1016/j.proci.2014.06.007
M3 - Article
SN - 1540-7489
VL - 35
SP - 1065
EP - 1072
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
IS - 1
ER -