TY - JOUR
T1 - The role of three-dimensional fault interactions in creating complex seismic sequences
AU - Yin, Yifan
AU - Galvez, Percy
AU - Heimisson, Elías Rafn
AU - Wiemer, Stefan
N1 - KAUST Repository Item: Exported on 2023-03-07
Acknowledgements: The authors have no conflicts of interest to declare. This research is funded by SED credit number 22818. ERH acknowledges funding from the ETH Zürich Postdoctoral Fellowship (Project No. FEL-19 20-2). YY would like to thank Dr. P. A. Selvadurai and Dr. A. P. Rinaldi for the valuable discussions. The authors thank editor Prof. Rebecca Bendick, reviewer prof. B. A. Erickson, and two anonymous reviewers, who's critical comments substantially improved the manuscript. The simulations are carried out on the ETH Zürich Euler cluster.
PY - 2023/2/27
Y1 - 2023/2/27
N2 - A physics-based earthquake simulator should reproduce first-order empirical power-law behaviors of magnitudes and clustering. These laws have emerged spontaneously in either discrete or low-dimension continuum simulations without power-law or stochastic heterogeneity. We show that the same emergence can occur in 3-D continuum simulations with fault interactions and rate-and-state friction. Our model approximates a strike-slip fault system as three en echelon faults. Simulations show spatio-temporally clustered earthquake sequences exhibiting characteristic Gutenberg-Richter scaling as well as empirical inter-event time distribution. The Gutenberg-Richter scaling occurs only in partial ruptures that result from fault interactions. With fault interactions, partial ruptures emerge when seismogenic width W over characteristic nucleation length L∞ is larger than 16.24, but none occur without fault interaction. The mainshock recurrence times of individual faults remain quasi-periodic. The system mainshock recurrence time is a combination of short-term Omori-type decay and Brownian passage time. Higher W/L∞ increase short-term clustering probability to at most 30%. These results indicate that physics-based multi-cycle models adequately reflect observed statistical signatures and show practical potential for long-term hazard assessment and medium-term forecasting.
AB - A physics-based earthquake simulator should reproduce first-order empirical power-law behaviors of magnitudes and clustering. These laws have emerged spontaneously in either discrete or low-dimension continuum simulations without power-law or stochastic heterogeneity. We show that the same emergence can occur in 3-D continuum simulations with fault interactions and rate-and-state friction. Our model approximates a strike-slip fault system as three en echelon faults. Simulations show spatio-temporally clustered earthquake sequences exhibiting characteristic Gutenberg-Richter scaling as well as empirical inter-event time distribution. The Gutenberg-Richter scaling occurs only in partial ruptures that result from fault interactions. With fault interactions, partial ruptures emerge when seismogenic width W over characteristic nucleation length L∞ is larger than 16.24, but none occur without fault interaction. The mainshock recurrence times of individual faults remain quasi-periodic. The system mainshock recurrence time is a combination of short-term Omori-type decay and Brownian passage time. Higher W/L∞ increase short-term clustering probability to at most 30%. These results indicate that physics-based multi-cycle models adequately reflect observed statistical signatures and show practical potential for long-term hazard assessment and medium-term forecasting.
UR - http://hdl.handle.net/10754/690060
UR - https://linkinghub.elsevier.com/retrieve/pii/S0012821X23000699
UR - http://www.scopus.com/inward/record.url?scp=85149007797&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2023.118056
DO - 10.1016/j.epsl.2023.118056
M3 - Article
SN - 0012-821X
VL - 606
SP - 118056
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -