TY - JOUR
T1 - The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
AU - Song, Yin
AU - Hellmann, Christoph
AU - Stingelin, Natalie
AU - Scholes, Gregory D.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: G.D.S. acknowledges financial support for this work from the Natural Sciences and Engineering Research Council of Canada (through NSERC Polanyi Award). Y.S. would like to thank Dr. Ryan D. Pensack for stimulating discussion. C.H. was supported by a KAUST Global Collaborative Research Academic Excellence Alliance (AEA) grant.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2015/6/7
Y1 - 2015/6/7
N2 - © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
AB - © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
UR - http://hdl.handle.net/10754/599962
UR - http://aip.scitation.org/doi/10.1063/1.4916325
UR - http://www.scopus.com/inward/record.url?scp=84926442708&partnerID=8YFLogxK
U2 - 10.1063/1.4916325
DO - 10.1063/1.4916325
M3 - Article
C2 - 26049430
SN - 0021-9606
VL - 142
SP - 212410
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
IS - 21
ER -