TY - JOUR
T1 - Theoretical Calculation of Reaction Rates and Combustion Kinetic Modeling Study of Triethyl Phosphate (TEP)
AU - Neupane, Sneha
AU - Rahman, Ramees K.
AU - Masunov, Artëm E.
AU - Vasu, Subith S.
N1 - KAUST Repository Item: Exported on 2022-06-10
Acknowledgements: The project or effort depicted was sponsored by the Department of Defense, Defense Threat Reduction Agency (grant number: HDTRA1-16-1-0009). The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. We would also like to acknowledge Dr. William J. Pitz (LLNL) and Prof. Mani Sarathy (KAUST) for providing valuable insights regarding addition of the H-abstraction pathway to the TEP submechanism.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2019/3/29
Y1 - 2019/3/29
N2 - Triethyl phosphate (TEP) is an organophosphorus compound used as a simulant for highly toxic nerve agents such as sarin GB. A high temperature decomposition pathway during TEP pyrolysis has been proposed previously and takes place via seven concerted elimination reactions. A computational study to investigate the kinetics of these seven reactions was carried out at the CBS-QB3 level of theory. The transition state optimization was done at the B3LYP/6-311G(2d,d,p) theory level, and CanTherm was used to derive the Arrhenius coefficients. The pre-exponential factors of the rate constant of these reactions were found to be up to 50 times lower than the estimated values from the literature. In addition, kinetics of reaction of the trioxidophosphorus radical (PO3) with H2 (H2 + PO3 → HOPO2 + H), which is one of the important reactions in predicting CO formation during TEP decomposition, was also investigated computationally at the same theory level. The new kinetic parameters derived from the computational study were used with the TEP kinetic model proposed recently by our group. In addition, an alternative decomposition pathway for TEP decomposition via H-abstraction, radical decomposition, and recombination reactions was added. The proposed mechanism was validated with the literature's experimental data, that is, intermediate CO time-history data from pyrolysis and oxidation experiments and ignition delay times. Fairly good agreement with experiments was obtained for pyrolysis and oxidation CO yield within 1200-1700 K. The model was able to predict the ignition times of the rich TEP mixture (? = 2) within 25% of the experimental results, while the discrepancies for stoichiometric and rich mixtures were larger. Discussions on results of sensitivity and reaction pathway analysis are presented to identify the important phosphorus reactions and to understand the effect of addition of the alternative TEP decomposition pathway.
AB - Triethyl phosphate (TEP) is an organophosphorus compound used as a simulant for highly toxic nerve agents such as sarin GB. A high temperature decomposition pathway during TEP pyrolysis has been proposed previously and takes place via seven concerted elimination reactions. A computational study to investigate the kinetics of these seven reactions was carried out at the CBS-QB3 level of theory. The transition state optimization was done at the B3LYP/6-311G(2d,d,p) theory level, and CanTherm was used to derive the Arrhenius coefficients. The pre-exponential factors of the rate constant of these reactions were found to be up to 50 times lower than the estimated values from the literature. In addition, kinetics of reaction of the trioxidophosphorus radical (PO3) with H2 (H2 + PO3 → HOPO2 + H), which is one of the important reactions in predicting CO formation during TEP decomposition, was also investigated computationally at the same theory level. The new kinetic parameters derived from the computational study were used with the TEP kinetic model proposed recently by our group. In addition, an alternative decomposition pathway for TEP decomposition via H-abstraction, radical decomposition, and recombination reactions was added. The proposed mechanism was validated with the literature's experimental data, that is, intermediate CO time-history data from pyrolysis and oxidation experiments and ignition delay times. Fairly good agreement with experiments was obtained for pyrolysis and oxidation CO yield within 1200-1700 K. The model was able to predict the ignition times of the rich TEP mixture (? = 2) within 25% of the experimental results, while the discrepancies for stoichiometric and rich mixtures were larger. Discussions on results of sensitivity and reaction pathway analysis are presented to identify the important phosphorus reactions and to understand the effect of addition of the alternative TEP decomposition pathway.
UR - http://hdl.handle.net/10754/678850
UR - https://pubs.acs.org/doi/10.1021/acs.jpca.9b00636
UR - http://www.scopus.com/inward/record.url?scp=85065095650&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.9b00636
DO - 10.1021/acs.jpca.9b00636
M3 - Article
SN - 1520-5215
VL - 123
SP - 4764
EP - 4775
JO - The Journal of Physical Chemistry A
JF - The Journal of Physical Chemistry A
IS - 22
ER -