TY - JOUR
T1 - Therapeutic potential of nanocarrier for overcoming to P-glycoprotein
AU - Kaur, Vimratjeet
AU - Garg, Tarun
AU - Rath, Goutam
AU - Goyal, Amit K.
N1 - Generated from Scopus record by KAUST IRTS on 2023-10-12
PY - 2014/12/1
Y1 - 2014/12/1
N2 - Enhancement of targeted therapeutic effect in the body and achievement of high bioavailability are major concern for the researchers due to the complex physiology of human body. There are so many barriers that hinder the absorption and permeation of drugs from the body, thus influencing the bioavailability of therapeutics. P-glycoprotein (P-gp) is one of such barrier present on the apical membranes of various organs such as small intestine, brain, kidney and liver. This protein interacts with vast variety of therapeutics and efflux out them preventing their entrance to the desired site, thus modulating their pharmacokinetic properties. To address this, a concerned number of approaches have been used such as the use of chemo sensitizers along with the therapeutics and various novel techniques. In this review, we are going to discuss the basic introduction to this protein and overview of various strategies used earlier to tackle the problem of P-gp efflux as well as the role of nanocarriers in confronting this issue. Nanocarriers have played great role in the enhancement of the bioavailability of many antineoplastic agents as well as other P-gp substrates. Encapsulation of P-gp inhibitors in the nanocarrier system prevents toxicity and gives site-specific action.
AB - Enhancement of targeted therapeutic effect in the body and achievement of high bioavailability are major concern for the researchers due to the complex physiology of human body. There are so many barriers that hinder the absorption and permeation of drugs from the body, thus influencing the bioavailability of therapeutics. P-glycoprotein (P-gp) is one of such barrier present on the apical membranes of various organs such as small intestine, brain, kidney and liver. This protein interacts with vast variety of therapeutics and efflux out them preventing their entrance to the desired site, thus modulating their pharmacokinetic properties. To address this, a concerned number of approaches have been used such as the use of chemo sensitizers along with the therapeutics and various novel techniques. In this review, we are going to discuss the basic introduction to this protein and overview of various strategies used earlier to tackle the problem of P-gp efflux as well as the role of nanocarriers in confronting this issue. Nanocarriers have played great role in the enhancement of the bioavailability of many antineoplastic agents as well as other P-gp substrates. Encapsulation of P-gp inhibitors in the nanocarrier system prevents toxicity and gives site-specific action.
UR - http://www.tandfonline.com/doi/full/10.3109/1061186X.2014.947295
UR - http://www.scopus.com/inward/record.url?scp=84910104897&partnerID=8YFLogxK
U2 - 10.3109/1061186X.2014.947295
DO - 10.3109/1061186X.2014.947295
M3 - Article
SN - 1061-186X
VL - 22
SP - 859
EP - 870
JO - Journal of Drug Targeting
JF - Journal of Drug Targeting
IS - 10
ER -